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Abstract
It is of fundamental importance to establish whether there is a limit to how thin a
superconducting wire can be, while retaining its superconducting character—and if there is
such limit, to understand what determines it. This issue may be of practical importance in
defining the limit to miniaturization of superconducting electronic circuits. Recently, a new
fabrication method, called molecular templating, was developed and used to answer such
questions. In this approach, a suspended carbon nanotube is coated with a thin superconducting
metal film, thus forming a superconducting nanowire. The wire obtained is automatically
attached to the two leads formed by the sides of the trench. The usual material for such wires is
the amorphous alloy of MoGe (Graybeal 1985 PhD Thesis Stanford University; Graybeal and
Beasley 1984 Phys. Rev. B 29 4167; Yazdani and Kapitulnik 1995 Phys. Rev. Lett. 74 3037;
Turneaure et al 2000 Phys. Rev. Lett. 84 987). Such wires typically exhibit a high degree of
homogeneity and can be made very small: as thin as ∼5 nm in diameter and as short as ∼40 nm
in length. The results of transport measurements on such homogeneous wires can be
summarized as follows. Short wires, shorter than some empirical length, ∼200 nm for MoGe,
exhibit a clear dichotomy. They show either a superconducting behavior, with the resistance
controlled by thermal fluctuations, or a weakly insulating behavior, with the resistance
controlled by the weak Coulomb blockade. Thus a quantum superconductor–insulator transition
(SIT) is indicated. Longer wires exhibit a gradual crossover behavior, from almost perfectly
superconducting to normal or weakly insulating behavior, as their diameter is reduced.
Measurements of wires, which are made inhomogeneous (granular) on purpose, show that such
wires, even if they are short in the sense stated above, do not show a clear dichotomy, which
could be identified as an SIT (Bollinger et al 2004 Phys. Rev. B 69 180503(R)). Thus,
inhomogeneity destroys the SIT, as in the case of thin superconducting films (Frydman 2003
Physica C 391 189–95). Here, only properties of homogeneous wires are reviewed.

1. Introduction

Thin superconducting nanowires have properties in many
ways similar to so-called ‘weak superconducting links’ [7].
Nanowires have been used as detectors and mixers of
microwave radiation [8–10]. Superconducting nanowires can
find applications in classical [11, 12] and possibly quantum
information-processing devices. Quantum devices are those
which exhibit a macroscopic quantum behavior. A program
to study macroscopic quantum phenomena was initiated by
Leggett around 1980 [13–17]. A ultimate experimental
demonstration that a macroscopic object can behave as a single

quantum particle was given by Martinis, Devoret, and Clarke
in 1987 [18]. They used a microwave technique and showed
that a micron-size superconducting device possesses a discrete
energy spectrum. In addition, they showed that the device is
capable of macroscopic quantum tunneling (MQT), i.e. that
it can be in a quantum superposition of macroscopically
distinct states. Macroscopic quantum devices can be used
as qubits in quantum computers [19–22]. Superconducting
qubits based on nanowires were recently proposed by Mooij,
Harmans, and Nazarov [23, 24]. The problem of MQT in
quasi-one-dimensional (1D) superconducting systems, such as
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thin superconducting wires, remains an active field of research
today, with many questions unanswered [25–35].

A distinctive property of thin superconducting wires is
that, due to thermal fluctuations, the resistance of a quasi-1D
nanowire remains greater than zero at any finite temperature
below its critical temperature TC [36–41]. The basic reason
for this is that at any finite temperature each segment of a thin
wire has a non-zero probability of becoming normal for a short
period of time (typically ∼10−11–10−12 s). Typical dimensions
of such fluctuations are of the order of the coherence length.
Since the wire diameter is assumed smaller than the coherence
length, it is clear that each such fluctuation should disrupt the
flow of supercurrent and thereby impart a non-zero resistance
to the wire. Such fluctuations are called thermally activated
phase slips (TAPS). The superconducting phase along the
wire ‘slips’ by 2π each time a normal region appears in
the wire. The TAPS are strongly pronounced only very
near TC, unless the wire is very thin. The resistance of
the wire is linearly proportional to the rate of TAPS. As the
temperature is lowered, their rate exhibits a fast drop, following
the Arrhenius law. Thus TAPS cause a broadening of the
apparent superconducting transition of the wire. For example,
for a MoGe wire of diameter ∼10 nm, the apparent resistive
transition region width is typically of the order of 1 K, while for
a Sn wire of the order of 1 μm in diameter the transition region
might be as narrow as ∼1 mK [41]. Yet, strictly speaking, the
resistance of a wire is never exactly zero, due to the fact that
TAPS has a nonzero probability at any finite temperature, but
it can be exponentially low.

In principle, a wire can fall into one of the following
three different categories: (i) ‘truly superconducting’,
i.e. approaching zero resistance (R = 0) in the limit of zero
temperature (T = 0), as the TAPS freeze out, (ii) ‘resistive’
or ‘normal’, with R > 0 at T = 0 (such situation might
occur due to tunneling of quantum phase slips (QPS)), and
(iii) insulating, with R → ∞ as T → 0. Intuitively,
it seems natural to expect that, at some point, thin wires
should lose their superconducting qualities as the diameter
is gradually reduced, approaching zero. Assuming this
is true, and assume also that wires thicker than a certain
limit are truly superconducting, then one can expect one
or more quantum transitions, associated with destruction of
superconductivity, to occur as the wire diameter is reduced,
at zero temperature. Such transitions are usually called
superconductor–insulator transitions (SIT). General conditions
under which SIT(s) happen are not well established, although,
as we shall demonstrate, there is much evidence, experimental
as well as theoretical, indicating that such transitions do exist.

The existence of an SIT implies the existence of at
least two distinct regimes, namely a superconducting regime
(with R → 0 as T → 0) and an insulating regime (with
R → ∞ as T → 0). Results supporting the SIT scenario,
namely the observations of two qualitatively different families
of R(T ) curves, usually with the resistance decreasing with
cooling in thicker wires and the resistance increasing with
cooling in thinner wires, have been reported, for example,
in [42, 34, 25, 26, 5]. A number of SIT theories have been
suggested already, including Berezinskii–Kosterlitz–Thouless

type quantum transition, generalized for QPS [28], and theories
depending on a quantum dissipative environment [43–45],
similar to the Schmid–Bulgadaev (SB) [46] transition [47–51],
which was observed experimentally on resistively shunted
Josephson junctions [52, 35]. Recent experiments on short
wires (L < 200 nm) suggest that the total wire resistance in
the normal state RN is a better control parameter compared
to the wire diameter d [53]. An approximate and simple
rule was found empirically: the resistance of wires with
RN < RQ ≡ h/4e2 ≈ 6.45 k� decreases exponentially
with cooling, while wires with RN > RQ shows a weakly
insulating behavior. This behavior suggests that an SIT takes
place. The fact that the apparent critical point is given by the
condition RN ≈ RQ suggests that the observed SIT may be
of a similar origin as the SB transition, although an important
difference is present: the nanowires were measured without
any external shunting resistor present. But, some sort of self-
shunting might be occurring, due to a collective effect of
multiple QPS normal cores, as was suggested by Bollinger et al
[54]. A renormalization theory that includes collective QPS
effects was developed by Meidan et al [45]. Another, different
but important fact is that the homogeneity of samples appears
to be a necessary requirement for the observation of an SIT1.

On the other hand, many results were published during
recent years that can be understood as providing evidence
against the occurrence of any SIT in thin wires. These results
imply that the rate of quantum phase slips is higher than
zero for a wire of any diameter. In other words, any wire is
characterized by R → R0 > 0 as T → 0 (although R0

is expected to drop very rapidly with increasing diameter).
So, the wire is always ‘normal’ or ‘resistive’, and there are
no distinct phases. A large number of experimental and
theoretical results [25, 27, 55–57] assume such a gradual
crossover. Experimentally, the presence of QPS is usually
concluded if a resistive ‘tail’ is observed. In other words, if
the measured resistance exceeds the one expected from the
TAPS model. It should be noted, nevertheless, that other
effects have been suggested to cause additional (compared
to pure TAPS) broadening of the resistive transition. Such
explanations include 1D Coulomb correlation effects [42] and
various inhomogeneities of the wires [5, 58].

2. Molecular templating fabrication method

A technique of molecular templating (MT) can be used
to fabricate thin and short metallic wires with ultrasmall
dimensions. The technique [26] employs a suspended linear
molecule as a template subjected to a metal deposition process

1 A well defined superconductor–insulator transition can only be observed
on a family of homogeneous wires [5]. Inhomogeneous wires typically
show multiple resistive transitions and multiple critical-current-like peaks in
the differential resistance versus current curves, dV (I )/dI . Their R(T )
curves frequently show ‘tails’, somewhat similar to the QPS ‘tails’. As their
diameter is reduced, they show an ill-defined crossover from a predominantly
superconducting to a predominantly insulating behavior. Yet most of the
inhomogeneous wires exhibiting a mixed behavior, with some superconducting
and some insulating characteristics present in the same sample. Hence,
inhomogeneous wires, usually identified by multiple steps on their R(T )
curves and/or multiple critical-current-like peaks on dV (I )/dI , are excluded
from consideration in this review.
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Figure 1. Molecular templating of nanowires. (a) Schematic
illustration of molecular templating fabrication of thin metallic wires.
A nanotube (the horizontal black line indicated by a vertical arrow on
the right side) is positioned across a trench, which is etched into the
top SiN layer (yellow) of thickness ∼100 nm. The underlying SiO2

is used to create an undercut and to improve electrical insulation of
the electrodes from the Si substrate. A superconducting metal
(typically MoGe) is sputtered over the entire surface of the Si chip.
Red circles schematically represent atoms of Mo and Ge. Since the
sputtered metal sticks to the suspended nanotube, the tube transforms
into a metallic nanowire, seamlessly connected to the electrodes,
simultaneously deposited on the banks of the trench.
Photolithography and reactive ion etching (or wet etching in H2O2)
are subsequently employed in order to defining the shape of the
electrodes (E1 and E2) and destroy all wires but the one protected
with photoresist. The segment of the wire located between arrows
marked A and B is suspended over the tilted sides (TS) of the trench.
This segment appears brighter in SEM images and is called a ‘white
spot’. (b) A scanning electron micrograph (SEM) of a real nanowire
suspended over a trench (black) and connecting to two MoGe
electrodes (gray areas). The white spots are visible on both sides of
the wire. The beginning and the end of one of the white spots is
marked by arrows A and B. The presence of white spots at each end
of the wire indicates its good quality. Absence of white spots
indicates imperfections of the sample, such as the wire not being
coplanar with the electrodes or not straight, or it is not well
connected to the electrodes.

(figure 1). The molecule has to be rigid, straight, and stable
enough to withstand the sputtering deposition process. The
molecule should also provide a good mutual adhesion with
the sputtered metal in order to avoid the grain formation.
It was found empirically that materials such as MoGe and
Nb [59, 60] have a good adhesion to carbon nanotubes. The
amorphous MoGe alloy [1–4] is probably the best choice
for making wires with nanotube templates, since it makes a
homogeneous coating. MoGe is a strongly disordered alloy
with a short electronic mean free path, l ∼ 3–4 Å and
a rather high superconducting critical temperature TC ≈
7.4 K in bulk samples. Other metals form grains when
evaporated on a nanotube. One way to improve the adhesion
is to coat the molecule with a thin Ti layer [61]. The list
of molecules, which were used successfully as molecular
templates, includes carbon nanotubes [26, 27], fluorinated
carbon nanotubes (fluorotubes) [62, 5], DNA molecules [63],
and WS2 nanorods [64]. An amorphous InO was used as a
coating material in the case of WS2 nanorods. Unlike regular

nanotubes, the fluorotubes are 100% insulating and should
be used when the conductivity of the supporting molecule is
undesirable. It was found that MoGe wires made on insulating
fluorotubes [5] have similar properties to those made on regular
nanotubes [26]. Since the molecules used as templates are very
thin, 1–3 nm in diameter, the resulting nanowires that can be
obtained are considerably thinner than 10 nm in diameter. This
fact makes the MT method unique since it is very difficult
to obtain wires thinner than ∼10 nm in diameter with more
traditional fabrication methods.

In MT (figure 1), the fabrication is done on a Si (100)
wafer covered with a layer of 500 nm thick SiO2, including
100 nm dry oxide and 400 nm wet oxide layers, and a 60 nm
thick film of low stress SiN [65]. A narrow (∼100 nm) and
long (∼5 mm) trench is then defined in the SiN film using
electron beam (e-beam) lithography and reactive ion etching
with SF6 plasma. A focused ion beam can be used, if desired,
instead of e-beam lithography. An undercut is then formed by
wet etching in HF for ∼10 s. In a ∼50% concentrated HF-
in-water solution, the undercut quickly develops, due to the
fact that this acid etches silicon oxide much faster than the
silicon nitride. Making the undercut is an important part of the
sample fabrication: it ensures that the electrodes formed in the
subsequent metal sputtering step are electrically disconnected.
(More precisely, the electrodes are connected through the
nanowire, but they are not connected anywhere else.)

Fluorinated nanotubes are deposited from a solution in
isopropyl alcohol. If regular carbon nanotubes are used, they
should be dispersed in dichloroethane. After being blown
dry with a nitrogen gun, the sample is sputter coated with
the desired superconducting metal, typically ∼5–15 nm of
Mo79Ge21 (figure 1). After sputtering, each nanotube which
is suspended over the trench becomes coated with metal to
form a metallic nanowire. The metal is located mostly above
the nanotube, although some amount can also diffuse under
the nanotube, since sputtering is not a completely directional
deposition process. In SEM, such nanowires appear continuous
and homogeneous (figure 2). Some apparent surface roughness
can be attributed to the amorphous morphology of the wire
and to the surface oxidation, due to exposure to air. After
the sputtering, one obtains many such nanowires crossing the
trench.

It is important to ensure that the wire selected for
measurements is straight and is coplanar with the electrodes.
If the wire is not coplanar, then the film electrodes are
not connected directly to the wire, but only through poorly
metallized regions on the inner sides of the trench (the TS
region in figure 1(a)). To ensure the nanowire straightness,
only wires with so-called ‘white spots’, visible on the
corresponding SEM images (figure 1(b)), are selected for
measurements. The beginning and the end of one such white
spot, at the left end of the wire, are indicated by arrows marked
A and B (figure 1(b)). The reason why such white spots
are visible in SEM is explained in the schematic drawing of
figure 1(a). The region between the marker ‘A’ and marker
‘B’ on this schematic shows the segment of the nanotube
suspended over the tilted side (TS) of the trench. Thus the
SEM image includes superimposed images of the wire and
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(a)
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Figure 2. (a) A transmission electron micrograph (TEM), made
using JEOL 2010F microscope, of one of the thinnest MoGe wire.
The apparent width is ∼8 nm. Since a surface layer of about 2–3 nm
is oxidized [5], the actual width of the conducting core of this wire
can be estimated ∼4 nm. Some surface oxide is indeed visible in the
image. It appears as a material of somewhat different morphology
and brightness compared to the material in the middle of the wire.
The nanowire on this micrograph was made by sputter deposition of
a 7 nm thick Mo79Ge21 film over the surface of a fluorinated
nanotube. The nanotube itself is not visible since it is coated by the
alloy. This sample was prepared on a TEM substrate with small
holes, specifically for making such images. (b) Another example of a
typical MoGe wire with a larger diameter [66].

the side of the trench right under it. Together, they produce
the appearance of a brighter region. In the cases when the
nanotube is not straight, but, rather, it tilts down the trench
and cross the gap at the level of the bottom surface of the SiN
film (i.e. ∼100 nm below the plane of the film electrodes),
such white spots do not appear. Thus, wires which have no
white spots are considered not straight and they should not be
selected for transport experiments. As is clear from figure 1(a),
white spots can only occur if the trench side slope is θ < 90◦,
which is usually the case. The trench side slope is caused by
the isotropic nature of the SF6 reactive ion etch that created
the trench. In practice, such white spots are only observed
for trenches which are narrower than about 200 or 300 nm.
On trenches wider than this, the templating nanotube almost
always sticks to the sides of the trench (the ‘TS’ region in
figure 1(a)), tilts down the trench, and crosses the trench at
the level of the bottom surface of the SiN layer. For this
reason white spots do not occur. The resulting nanowire is
not directly connected to the leads, but only through the ‘TS’
region (figure 1(a)), which may not be well metallized and
can act as a weak link. This might explain the fact that the
majority of wires longer than ∼200–300 nm, made by the
MT method outlined here, appear as inhomogeneous wires
in transport measurements. Namely, they typically exhibit
multiple resistive transitions, resistive tails and multiple critical
currents.

After a desired wire is chosen, photolithography, guided
by a set of markers positioned along the trench (not shown), is

employed in order to pattern the electrodes (figure 1(a)) and for
etching away of all nanowires except the selected one. Unlike
in the schematic drawing of figure 1(a), in a practical device
the number of contact pads has to be at least four, but usually
the number is five [26], to allow 4-probe measurements on
the wire. A ready Si chip is then installed into a plastic chip
carrier with nonmagnetic metallic pins. The connection of the
samples electrodes to the pins is done using gold wires and
indium dots. The person making the connections is always
grounded, in order to prevent burning of the wire with static
electricity.

3. Transport measurements of nanowires

In what follows we describe a set-up used to observe an SIT
on short wires [5, 53, 66]. Transport experiments, which
include zero-bias resistance versus temperature R(T ), voltage
versus bias current V (I ), and the differential resistance versus
bias current dV (I )/dI measurements, are typically done in
a He-3 cryostat equipped with RF-filtered leads. In order to
measure V (I ) curves, a sinusoidal AC current (at 12.7 Hz
frequency and 1–10 nA amplitude) is injected through the
superconducting thin film electrodes. The voltage is measured
using a separate pair of leads also connected to the thin
film electrodes [26, 66]. The measurement is done with a
low noise battery-operated preamplifier, namely PAR 113 or
SR560. The current is taken from a high precision function
generator (Stanford Research Systems, DS 360), connected to
the sample through a standard 1 M� series resistor, which
defines the current value. The voltage on the standard resistor
is measured with another PAR 113 (or SR560) preamplifier.
The bias current is then calculated using the known, fixed value
of the series resistor. The zero-bias, i.e. ‘linear’, resistance
of the sample is determined from the slope of the best linear
fit to the V (I ) curves measured at a low driving current
(∼3 nA), with the DC component of the bias current being
zero. The bias current amplitude is chosen small enough in
order to assure linear response conditions. The temperature
is measured using a commercially calibrated ruthenium oxide
thermometer (from Lake Shore Cryotronics, Inc.). The leads
connecting the sample are made of a Teflon-coated resistive
alloy wire, Stablohm 800, produced by California Fine Wire
Co. Before reaching the sample, these 1 m long Stablohm
wire leads are rolled over a cold Cu rod (the Cu rod is
rigidly connected to the He-3 pot of the refrigerator) and
coated with a layer of a conducting silver paste. This coating
with such electrically and thermally conducting glue ensures
that the leads are cooled to the base temperature and RF
filtered. Note that the sample itself is cooled through the
measurement leads. The coating of the signal wires with
the silver paste also acts as a microwave radiation filter. It
prevents the room temperature black body radiation from
impacting the sample. Similar filters are frequently made
with Cu powder coating and are known as ‘Cu powder
filters’. They were used by the Clarke group in their classic
experiments in which macroscopic quantum tunneling was
demonstrated [18]. All electrical signal lines reaching the
sample or the thermometer, positioned in close proximity to
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Figure 3. A typical resistance versus temperature curve for a MoGe
nanowire sample. The higher temperature resistance drop
corresponds to the superconducting transition in the thin film
electrodes adjacent to the wire. The second, broader transition
reflects the establishment of superconductivity in the wire. The
normal state resistance RN of the wire is defined at a temperature that
is slightly lower than the critical temperature of the electrodes, as is
shown by the arrow. The width of the film transition is ∼0.2 K and
the apparent width of the wire transition is ∼1 K, which is its
intrinsic property and is due to its small diameter and the
corresponding low barrier for phase slips.

the sample, are also filtered on the top of the cryostat with
π -filters [67]. All measurements on thin wires are performed
under the condition that only electrically ‘quiet’ equipment is
allowed to be directly connected to the sample. In other words,
only preamps which do not impose any excessive voltage or
current noise on the sample can be used. On the other hand,
some of the more traditional precision instruments, such as
certain types of digital voltmeters for example, may generate
high frequency (10–100 kHz) voltage spikes, up to ∼100 mV
in amplitude, even on their input terminals. Such voltage or
current noise, if it reaches the sample, can induce additional
phase slips in the nanowire and can make the wire to appear
more resistive than it actually is. A device like this should not
be directly plugged to the signal leads connected to the sample.
Incorrect grounding of the set-up can also cause resistive tails,
similar to those typically described as QPS-related resistive
tails.

A typical R(T ) curve is shown in figure 3. Since the
wire is connected in series with the thin film electrodes, two
resistive transitions are observed. The first one (at ∼6 K)
is due to the electrodes becoming superconducting. This
fact was confirmed by independent measurements of thin film
electrodes connected to the wire [26]. The second transition
(at ∼3.5 K) is due to the nanowire losing its resistance. Wires
made of MoGe alloy always show a lower critical temperature
than films of the same thickness. We define the normal state
resistance of the wire, RN, as the sample resistance measured
immediately below the temperature at which the leads become
superconducting, as is shown by an arrow in figure 3.

Figure 4. The normal state resistance, divided by the wire length, is
plotted (open circles) versus the wire cross sectional area, for a set of
23 superconducting wires, 14 insulating wires and 7 ‘mixed’ wires.
(All of such mixed wires were long wires, with L ∼ 500 nm. The
mixed behaviour is typically observed in inhomogenous wires [5].
Long wires frequently turned out inhomogenous, at least
slightly.) [66]. The effect of oxidation has been taken into account by
subtraction appropriate values from the width w and the thickness of
the wire t , as is discussed in the text. The line represents the fit
RN/L = ρ/[(w − 5 nm)(t − 2.5 nm)], where the resistivity that
gives the best fit is ρ = 175 μ� cm. The subtraction of 5 nm from
the measured width and 2.5 nm from the nominal sputtered thickness
is done in order to account for the approximate 2.5 nm surface layer
of MoGe being oxidized on each side of the wire as well as on its top
surface, due to air exposure.

4. Resistivity of metallic nanowires

Resistivity of nanowires is difficult to determine accurately
since it is difficult to measure precisely the cross section area
of the conducting core of the wire. The width of the wire w,
measured with SEM, is larger by a few nanometers than the
width of the conducting core of the wire, due to the surface
oxidation and some smearing of the SEM images at the scale
of a few nanometers. Transport properties of wires made on
TEM-compatible substrates have not been studied so far. An
analysis of a large set of wires with the goal of confirming
their homogeneity was done by Bollinger [66], as is reproduced
in figure 4. The vertical axis is the normal resistance of
the wires divided by its length, measured under the SEM
(Hitachi S-4700 High Resolution SEM). The horizontal axis
(figure 4) includes a product of the wire thickness t , which
is taken to be equal to the nominal thickness of the sputtered
MoGe and the wire width w, measured under the SEM. In
this approximate model the wire cross section is assumed to
be a rectangle with dimensions w and t . The actual metallic
core of the wire is smaller than these dimensions due to the
surface oxidation. The effect of oxidation has been taken
into account by reducing the width w and the thickness t
by independently estimate [5] oxidized thickness values of 5
and 2.5 nm, respectively. Note that the width is reduced by
twice the usual oxidation layer thickness, due to the fact that
both sides of the wire are oxidized. The horizontal axis in
figure 4 is chosen as a product of the oxidation-corrected width
and oxidation-corrected thickness, namely as (w − 5 nm)(t −
2.5 nm). A fit of the form RN/L = ρ/[(w−5 nm)(t−2.5 nm)]
is also shown in figure 4. It appears as a straight line, since
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Figure 5. Original Little’s phase slip diagram [36]. The complex
superconducting order parameter of a thin wire ring is drawn as a
function of the position along the ring. Two possible configurations
are shown, one is for an order parameter in the sub-ensemble n = 0
(no vortices present in the ring) and the other one is for n = 1 (one
vortex present in the ring). Near the point A, ψ1(x) makes an
excursion around zero on the Argand plane, while ψ0(x) does not.
The transition from n = 0 to 1 constitutes a phase slip event. This
transition can be viewed as a vortex, with its normal core, passing
across the wire. Hence, the transition between the n = 0 and 1 states
can only occur if the order parameter reaches zero somewhere on the
wire.

the graph is formatted as a log–log plot. The best-fit slope
gives the resistivity ρ = 175 μ� cm, in agreement with
previously published values of resistivity for bulk MoGe and
thin film MoGe [1]. This type of fit is done in order to verify
that all wires are characterized by the same bulk resistivity of
MoGe. The graph (figure 4) includes both types of samples:
superconducting as well as insulating samples. This plot shows
that normal state properties of the insulating wires and the
superconducting ones are not significantly different. Thus, it is
possible to rule out a trivial explanation for the observed SIT,
namely that superconducting wires behave superconducting
since they are homogeneous and insulating wires behave
insulating since they become granular due to the fact that they
are thinner. If that were the case, these two types of wires
would necessarily form two distinct families on the plot of
figure 4, with different values of the corresponding resistivity.
It is clearly not the case, as samples tend to follow the same
best fit, i.e. the straight line in figure 4.

5. Little’s phase slip

The notion of a phase slip was introduced by William
Little in 1967 [68]. This theory was developed in order
to understand the mechanism of the supercurrent decay
in thin wires and to justify Little’s earlier proposal of a
superconducting macromolecule [69]. Following Ferrell [70]
and Rice [71], Little’s argument is based on the assumption
that the superconducting order parameter is defined locally
(as well as globally) in a thin wire. The local amplitude
of the order parameter is subject to thermal fluctuations.
Each time a fluctuation strong enough to reduce the order
parameter to zero happens at some point along the wire, the
‘order parameter spiral’ (figure 5), representing a supercurrent
in the wire, is able to unwind. Thus a dissipation of
supercurrent occurs and the wire gains a non-zero electrical
resistance. This resistance is defined by an Arrhenius type
equation with a temperature-dependent energy barrier, which

is determined by the condensation energy required to locally
suppress the order parameter to zero. The minimum energy
barrier (the ‘saddle’ point) corresponds to fluctuations in
which the order parameter is suppressed in wire segments
with lengths on the order of the coherence length ξ(T ).2

The occurrence of TAPS causes nanowires to remain resistive
at any nonzero temperature, although the resistance drops
exponentially with cooling. This property is in agreement
with the general rule that no thermodynamic phase transition
can occur in a one-dimensional (1D) system [39, 70–72]. A
more precise calculation of the energy barrier for phase slips
was given by Langer and Ambegaokar (LA) [73], and the
attempt frequency was derived by McCumber and Halperin
(MH) [74]. Therefore the TAPS theory is also known as
the LAMH theory. The calculations were based on the
Ginzburg–Landau (GL) theory, which is valid only very near
TC, with the exception [75] of samples having a short mean
free path (i.e. dirty superconductors), which is the case for
MoGe. The MH calculation, based in time-dependent G–L
theory, is not exactly applicable to the tested wires, since the
superconductivity in them is not gapless, but it gives a useful
approximation.

Early experiments on 0.5 μm diameter tin whiskers, by
Lukens et al and Newbower et al, confirmed the LAMH
theory [41, 76]. In [41], in order to improve the fit to the data,
quasiparticle conductance near TC was included in parallel with
the conductance of the condensate. Recently, a structure of
TAPS in a clean, one-dimensional superconductor, in which
superconductivity occurs only within one or several identical
conducting channels, was developed by Zharov et al [77]. An
exact analytical solution in the whole temperature and current
range was found. Another recent development, by Pekker
et al, is a generalization of the LAMH theory to include two-
wire devices and the corresponding interference in magnetic
fields [78].

Little’s idea of a phase slip is illustrated in figure 5. Al-
though the original analysis was applied to the understanding
of a supercurrent stability in a closed loop (ring), made of a thin
wire, the same analysis is in fact applicable to the understand-
ing of the decay of the supercurrent flowing in a straight wire
connected to leads. In this graph (figure 5), the complex order
parameter ψ = |ψ(x)|eiϕ(x) of a thin wire ring is plotted as a
function of the position along the ring x . Two possible con-
figurations are shown (ψ0 and ψ1), the first one is for an order
parameter in the sub-ensemble n = 0 (no vortices present in
the ring) and the other one is for n = 1 (one vortex present in
the ring). Under a ‘vortex’ we understand such a configuration
of the complex order parameter for which the phase changes
by 2π as the point of observation circles the wire loop once.
On figure 5, near the point A, ψ1 makes an excursion around
zero on the Argand plane, while ψ0 does not make such ex-
cursion. Although the apparent difference between these two
curves is small and local, it is, in fact, very significant. Specif-
ically, the state ψ1 corresponds to a phase difference of 2π
along the ring and, as a result, carries some nonzero super-
current. The state ψ0, on the other hand, corresponds to zero

2 A superconducting nanowire behaves as one-dimensional (1D) if its
diameter is smaller than about 4.4ξ(T ). See figure 12 in [7].
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phase difference and, correspondingly, zero net supercurrent.
The transition from ψ1 to ψ0 constitutes a phase slip event that
topologically requires the order parameter curve to cross the
x-axis in the diagram, i.e. requires the condition ψ = 0 to
be satisfied at some time somewhere along the wire. In other
words, a phase slip is an event analogous to a vortex normal
core passing across the wire.

In each phase slip event the phase difference between the
ends of the wire can only change by an integer multiple of 2π .
Such slippage by 2πn (n is an integer), unlike a phase change
by any other value, does not require a voltage to be applied
to the leads, since their phases are defined modulo 2π . The
phase difference between the leads is defined by the number
of times the order parameter goes around zero on the Argand
plane as the point of observation moves along the wire. So as
this number of phase revolutions is reduced by one loop, the
phase difference is reduced by 2π .

A finite resistance occurs at constant voltage bias, in the
following way. The voltage applied to the ends of the wire
increases the phase difference between the ends of the wire
and thus tends to increase the supercurrent. At the same time
the phase slips occurring stochastically at all points along the
wire tend to unwind the phase and to reduce the supercurrent.
A dynamic equilibrium is established at a supercurrent value
that is linearly dependent on the applied voltage (for small
voltages). Thus a finite resistance occurs. Two different
approaches to calculating this resistance are presented below:
the Little’s fit and the LAMH model.

6. Little’s fit

Probably the simplest approximation one can think of that
describes the resistance of a nanowire, at temperatures below
its mean-field critical temperature TC, is the ‘Little’s fit’:

R(T ) = RN exp(−	F/kBT ). (1)

Equation (1) is based on the Arrhenius law. Here kB is the
Boltzmann constant, T is the temperature, 	F is the barrier
for phase slips, which depends on temperature and goes to
zero at T = TC. At temperatures close to TC this formula
is not accurate since it gives R(TC) = RN; the actual wire
resistance should be less than RN, due to superconducting
fluctuations. Nevertheless, equation (1) describes the resistive
transition in bridges [79] and nanowires [80] quite well at
low temperatures, at which the Arrhenius factor changes much
faster than the pre-exponential factor, so that making this pre-
factor a constant does not change much the overall shape
of the R(T ) dependence. To practically use this formula
(equation (1)) one needs to know the energy barrier 	F as
a function of temperature. A phase slip requires a complete
suppression of superconductivity in some volume. The energy
barrier is the lowest in the case when the length of the
volume where the order parameter is suppressed equals the
GL coherence length ξ(T ). Such choice of the phase slip
length minimizes both the amplitude and the gradient terms
of the condensate free energy [81]. The cross sectional area
of the volume is equal to the cross sectional area of the
wire A, provided that the wire diameter is smaller or about

equal to the coherence length. So the energy barrier can be
estimated as a product of the effective volume of a phase slip
∼ ξ(T )A and the condensation energy density H 2

C/8π , namely
	F(T ) ∼ ξ(T )A[H 2

C(T )/8π] ∼ (1 − T/TC)
3/2. Here,

the usual temperature-dependent expressions for the critical
field HC(T ) = HC(0)(1 − T/TC) and the coherence length
ξ(T ) = ξ(0)/

√
(1 − T/TC) are used. At low temperatures

the following empirical form of the temperature dependence
is more accurate HC(T ) ∝ (1 − (T/TC)

2) though, as was
illustrated in [54]. A more exact calculation of the free
energy barrier is based on the following exact form of the
order parameter |ψ| = ψ0 tanh[(x − x0)/2ξ(t)]. This is a
solution of the Ginzburg–Landau equation, which has a single
point x = x0 at which the order parameter is zero [81].
This solution gives the shape of the phase slip, but only at
zero-bias current [37]. The Ginzburg–Landau free energy
of this solution, referenced to the constant order parameter
free energy, is 	F(T ) ≈ (8

√
2/3)Aξ(0)[H 2

C(0)/8π](1 −
T/TC)

3/2 [37], and it is exactly valid only near the critical
temperature, as far as the approximation HC(T ) ∝ (1− T/TC)

is valid.
To plot a Little’s fits, one needs to use two fitting

parameters, the wire critical TC and the product Aξ(0)H 2
C(0).

Or, in the Tinkham and Lau formulation [82], the barrier can
be expressed as 	F(T ) = 0.83kBTC(RQ/RN)(L/ξ(0))(1 −
T/TC)

3/2. The normal resistance can be determined from
a high temperature measurement and the wire length can be
directly measured under SEM. The TC of MoGe wires is
size dependent and usually not known exactly for a given
wire. The same is true for the coherence length ξ(0).
Thus these two quantities are used as free fitting parameters.
Another, similar approach is to use the critical current of
the wire as an adjustable parameter, instead of the coherence
length. The corresponding barrier height is 	F(T ) =√

6(h̄/2e)IC(T ) [82].
A simple ‘derivation’ of equation (1) can be given

following the hypothesis stated by Little [36]: ‘We can
therefore calculate the time average of the resistance . . . by
determining what fraction of the time some part of the loop
is normal and thus has its normal resistance’. Based on this
simplifying hypothesis, one assumes that each segment of the
wire can only exist in one of the two distinct states: the
superconducting, i.e. zero resistance state that occurs between
phase slip events, and the normal state that is realized during
each phase slip event in the considered segment. The resistance
of the segment in this case equals its normal state resistance.
To justify equation (1) we assume that the phase fluctuation
attempt frequency �0 and the relaxation time of the order
parameter τ are defined by the same energy scale and hence
related to each other as �0 ≈ 1/τ . The number of phase
slips occurring per second, in accordance with the Arrhenius
law, is �PS = �0 exp(−	F/kBT ). The time fraction f
during which each segment of the wire remains in the normal
state is the product of the duration τ and the number of times
the order parameter reaches zero per second, which is �PS.
Hence we get f = τ�0 exp(−	F/kBT ) ≈ exp(−	F/kBT ).
In this approximate model, during each unit of time, the
wire stays normal during time f and remains superconducting
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during time 1 − f . The fluctuations are very rapid, so only
average values of the resistance can be detected. We define
a set of independent equivalent segments in the wire, each
having the length ξ(T ) and the normal state resistance R1N =
RNξ(T )/L, where L is the total length of the wire. The
time average resistance of each segment is R̄1 ≈ R1N f +
R0(1 − f ), where R0 ≡ 0 represents the resistance of each
segment in the superconducting state (i.e. when there is no
phase slip core on it). Finally, the total resistance of the
wire can be written as a product of the average resistance
of each independent segment R̄1 and the total number of
such segments L/ξ(T ). Thus one obtains equation (1), as
follows:

R(T ) = [L/ξ(T )]R̄1 = [L/ξ(T )][R1N f + R0(1 − f )]
= [L/ξ(T )][R1N f ] = RN exp(−	F/kBT ).

7. LAMH theory in the limit of low bias currents

The normal resistance of the wire is not explicitly included
in the LAMH theory, as it is the case in the Little’s fit.
The effective resistance is calculated by considering the time
evolution of the superconducting phase ϕ(x, t). The phase
difference between the ends of the wire is 	ϕ(t) = ϕ(L, t) −
ϕ(0, t), where the coordinates of the wire ends are x = 0
and x = L. The supercurrent is proportional to the phase
difference as IS = (e/m)|ψ|2(h̄∂ϕ/∂x − 2eAx/c), with the
phase gradient being ∂ϕ/∂x = 	ϕ/L if the supercurrent
density is constant along the wire. Here and below, the charge
of one electron is e = −|e|, the Planck’s constant is h̄ and
the mass of an electron is m. Since the effect of magnetic
field is not considered here, zero vector potential is chosen:
Ax = Ay = Az = 0.

If the charge transport is stationary, a dynamic equilibrium
is established. For a constant bias voltage V = const,
the supercurrent is also constant IS = const on average.
Therefore the phase difference should, on average, satisfy
d(	ϕ)/dt = 0. Two processes contributing to the change of
the phase difference 	ϕ: first, it is the voltage-driven phase
rotation occurring at the ends of the wire where the voltage
is applied. Second, it is the phase difference relaxation or
unwinding occurring due to phase slip events. Hence, the phase
difference evolves as d(	ϕ)/dt = 2eV/h̄ + ωL , where ωL

is the net phase slippage rate. Thus, for a stationary charge
transport we get the condition ωL = −2eV/h̄. In order to
calculate the resistance R = V/IS one needs to calculate
the stationary value of the supercurrent IS at which the
condition

ωL ≡ �+ −�− = −2eV/h̄ (2)

is satisfied. So the problem is reduced to finding the rate
of phase slips as a function of the supercurrent and the
temperature ωL ≡ ωL (I ST ). The net rate of phase slippage is
defined as ωL = �+−�−, where�+ is the rate corresponding
to phase slips and �− is the rate corresponding to anti-phase
slips. Two different rates are introduced because, as the order
parameter goes to zero, the phase difference can change by 2π
or by −2π . The 2π phase change events will be called ‘phase
slips’ since they reduce the supercurrent (if IS > 0 to start

with). The −2π phase change events will be called ‘anti-phase
slips’3.

Consider an example: suppose the bias voltage is zero
V = 0. In this case, due to equation (2), one needs to satisfy
�+ = �−. The asymmetry between the phase slips and anti-
phase slips depends on the supercurrent. The rates are equal if
and only if the supercurrent is zero. Thus one concludes that
IS = 0 for V = 0. Hence a thin, nominally superconducting
wire cannot support a current unless a nonzero voltage is
applied.

First we discuss the energy barrier for phase slips in zero
approximation, when the supercurrent is zero. For this it is
necessary to find the difference of the wire’s free energy in
the equilibrium state, with a constant order parameter (|ψ| =
ψ0 const) and the ‘phase slip state’ that has a zero order
parameter at some point x = x0. Such solution has the
form |ψ| = ψ0 tanh[(x − x0)/2ξ(t)] [81], with the phase
difference between the ends of the wire 	ϕ = π . The
exact calculation [37] shows that the energy barrier for a phase
slip is 	F(T ) = VPS(H 2

C/8π) where HC is the temperature-
dependent thermodynamic critical field, VPS ≈ 3.77ξ A is
the effective volume of the phase slip, A is the cross section
area of the wire, and ξ = ξ(T ) = ξ(0)/

√
1 − T/TC is

the temperature-dependent coherence length. At IS = 0,
the phase slip (PS) and the anti-phase slip (APS) rates are
the same: �+ = �− = � exp(−	F(T )/kBT ), where
� ≈ (8kB(TC − T )/π h̄)(L/ξ(T ))

√
	F(T )/kBT is the

attempt frequency [38, 39]. At IS > 0 the barrier for phase
slips becomes lower than the barrier for anti-phase slips (see
equation (3) in [108], leading to a phase flow with the net rate
ωL = �+−�− = �[exp(−(	F −δF)/kBT )−exp(−(	F +
δF)/kBT )]. We use the usual notation h = 2π h̄ and RQ =
h/4e2. The barrier correction term δF = π h̄ IS/2e = eIS RQ

equals one half of the difference between the barrier heights
experienced by phase slips and anti-phase slips. The derivation
of this correction, under the assumption that the supercurrent
is constant is as follows:

δF =
∫

ISV dt =
∫

IS[(2e)−1h̄ dϕ/dt] dt

=
∫ π

0
IS(2e)−1h̄ dϕ = π h̄ IS/2e.

In other words, δF is the work done by the supercurrent over
the system, as the phase difference between the ends of the
wire increases by π , which corresponds to an evolution of
the system from a state with a uniform order parameter to a
‘phase slip state’ that has zero order parameter at some point.

3 As a phase slip occurs, the phase difference can change either as 	ϕ →
	ϕ + 2π (phase slip) or as 	ϕ → 	ϕ − 2π (anti-phase slip). In the general
case the phase change can be written as 	ϕ → 	ϕ + 2πn. The events
characterized by an integer n and the condition |n| > 1 are higher order, less
probable events, which are neglected. The phase jumps with n not an integer
number are also neglected, due to the fact that they would require a rapid, as
rapid as the phase slip event itself, change of the phase of the leads, which is not
possible since leads are assumed macroscopic and the applied voltage is small.
To further clarify this discussion we note that the phase difference between
the leads is fully defined by the number of revolutions the wire’s complex
order parameter makes around the x-axis in the Little diagram (figure 5).
This number of revolutions, which is, in fact, the phase difference 	ϕ, is a
continuous variable and does not have to be an integer. But, topologically, a
phase slip can only change the number of revolutions by an integer.
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(As always, it is assumed that IS 
 IC.) If IS > 0, the work
performed by the current is positive for phase slips, and thus
the barrier is reduced for them. The work is negative for anti-
phase slips, and so the barrier for anti-phase slips is increased
by the same amount. Using equation (2) we get:

−eV = h̄� exp(−	F/kBT ) sinh(δF/kBT )

≈ δF(h̄�/kBT ) exp(−	F/kBT ). (3)

Finally it is possible to write the corresponding resistance
(LAMH resistance) RLAMH(T ) = V/IS, as:

RLAMH(T ) = RQ(h̄�/kBT ) exp(−	F(T )/kBT )

= Dt−3/2(1 − t)9/4 exp[−c(1 − t)3/2/t] (4)

with the normalized temperature defined as t = T/TC. Normal
quasiparticles, present in the wire at T ∼ TC, provide a
parallel conduction channel. Thus the net resistance can be
approximated as [39]

R−1 = R−1
LAMH + R−1

N . (5)

Here RN is the normal resistance of the wire. The LAMH
model predicts the constants D and c as follows [27, 66]:

c ≡ 	F(0)

kTC
= 1.76

√
2

3

RQ

RN

L

ξ(0)
(6)

and
D = (8/π)(L/ξ(0))RQ

√
c. (7)

8. Comparison with experiments

It the above discussion we outlined two possible theoretical
models generating TAPS-based R(T ) curves, namely the
Little’s fit, which explicitly involves the normal resistance of
the wire, and the LAMH model, which is based purely on
superconducting phase behavior. In this section we present a
comparative analysis of these two models, which was carried
out on the example of narrow superconducting bridges [79].
The R(T ) curves are shown in figure 6. The direct low
bias transport measurement is represented by open circles.
The solid black circles represent the resistance determined by
an indirect procedure, namely by extrapolation of high bias
(nonlinear) V (I ) measurements to zero bias [79]. The Little’s
fit is shown as a solid red curve and the LAMH fit is shown as a
dashed blue curve. Both curves exhibit a good agreement with
the data points at low temperatures where the resistance drops
rapidly. This agreement is observed over a range of eleven
orders of magnitude of the resistance. Yet there is a significant
difference between the two fits, as is apparent from the values
of the critical temperature. In each of these two fits the critical
temperature of the bridge is used as a free fitting parameter.
The best Little fit is obtained with TC,BRIDGE,Little = 4.81 K and
the best LAMH fit is obtained with TC,BRIDGE,LAMH = 5.38 K.
By an independent direct measurement it was determined that
the critical temperature of the film electrodes is TC,FILM =
4.91 K in this sample. Thus the LAMH fit requires the critical
temperature of the bridge to be chosen higher than that of the
film electrodes connected to the bridge. At the same time, it is
quite certain that in the actual sample the TC of the bridge is

Figure 6. Resistance plotted versus temperature, for a narrow
superconducting bridge sample B2 from [79]. Open circles represent
direct low bias transport measurements of the sample resistance.
Filled circles represent resistance determined indirectly, namely by
extrapolating high bias segments of the nonlinear voltage–current
V (I ) curves. The solid (red) and the dashed (blue) curves give the
best fits generated by the Little (equation (1)) and LAMH
(equation (4)) formulas correspondingly. The critical temperature of
the bridge was used as a fitting parameter. The best fits were obtained
with TC,BRIDGE,Little = 4.81 K for the Little and
TC,BRIDGE,LAMH = 5.38 K for the LAMH fit. The critical temperature
of the thin film electrodes is TC,film = 4.91 K in this sample, which is,
unrealistically, less than TC,BRIDGE,LAMH.

either equal or lower than the TC of the electrodes. The reason
is that the bridge and the electrodes are made in the same
sputtering run, consequently they have the same thickness4.
It is also known that the TC of MoGe films depends on the
thickness of the film: the smaller the thickness is the lower the
TC is [1, 2]. It is also well established that if the film is shaped
into a thin strip, the TC drops even lower [83].

Hence it can be expected with certainty that the critical
temperature of the bridge is equal or lower than the critical
temperature of the film electrodes. The LAMH-generated
critical temperature was in contradiction with this expectation.
Thus it can be suggested that the Little fit might be a more
accurate predictor of the critical temperature of a weak link,
such as a nanobridge or, possibly, a nanowire. The deviation
in the LAMH fit might be due to the fact that this fit
generates zero resistance at the critical temperature (see the
blue dashed curves in figure 6 going down as the temperature
approaches the critical temperature TC,BRIDGE,LAMH = 5.38 K).
This unphysical artifact occurs due to the fact that the
LAMH attempt frequency [38] approaches zero at the critical
temperature of the bridge or of the wire. More accurate fits can
probably be obtained by taking into account the phase diffusion
phenomenon, which should prevent the attempt frequency
from vanishing at T → TC [84].

4 The fabrication of the bridges in [79] was done in the same way as the
fabrication of molecular-templated nanowires, outlined in the second section
of this review. The only difference was that in the case of the nanobridges
no molecule was used, but, instead, a SiN bridge served as a template for
the superconducting bridge. Therefore such bridges are usually wider than
nanowires produced by metal decoration of carbon nanotubes.
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9. Quantum phase slips: Giordano’s model

It is generally expected that any thermal activation over
a barrier, such as the TAPS discussed above, would
change to quantum tunneling at sufficiently low temperatures.
Consequently, at low enough temperature phase slips should
arise from quantum fluctuations of the order parameter.
Observation of such quantum phase slips (QPS) was first
reported by Giordano [25], in experiments with thin In and
PbIn wires. The QPS phenomenon appeared as a crossover
from the thermally activated behavior near TC to a more weakly
temperature-dependent resistance ‘tail’ at lower temperatures.
Giordano suggested a model that describes the resistance
tails in terms of macroscopic quantum tunneling (MQT) of
quantum phase slips through the same free energy barrier as
the one experienced by TAPS. However, interpreting these
QPS results has been complicated by the reports in which thin
wires were measured but such resistive tails were either not
observed [5, 54, 53] or were weak and warranted a different
interpretation [42]. Yet, the number of experimental reports
in which some sort of resistance tail was observed and was
discussed in terms of QPS is larger [25, 27, 55, 56, 58]. We
present some of these results below. First, we review the
Giordano model [25] for MQT of QPS, as outlined in [27].

It can be argued that the probability of QPS at very low
temperatures should be proportional to exp(−	F(0)/h̄ωS),
where h̄ is the Planck’s constant and ωS is some characteristic
frequency of quantum fluctuations of the superconducting
order parameter [27]. The expression for the resistance in the
case of QPS is similar to the pure TAPS case, but an extra
term is added that represents the QPS contribution, namely
the Giordano term RG, assumed connected in series with the
LAMH resistance, since the classical and quantum fluctuations
contribute additively to the total rate of phase slip events. For
this reason the total resistance is written as:

R−1 = (RG + RLAMH)
−1 + R−1

N . (8)

A heuristic argument leads to a conclusion that the resistance
originating from the QPS follows a form similar to the LAMH
expression (equation (4)), except that the appropriate quantum
fluctuation energy scale is kBTQ = h̄/τGL = (8/π)kB(T −TC),
instead of the usual thermal energy kBT . Thus the quantum
Giordano resistance is [27]:

RG = B RQ(h̄�G/kBTQ) exp[−a	F/kBTQ] (9)

with two extra adjustable parameters B and a which
are supposed to be of order unity. These parameters
take into account the approximate nature of the suggested
expression [27]. Following the same idea of replacing the
thermal energy kBT by the ‘quantum energy’ kBTQ in the
thermal attempt frequency, the following approximate form for
the quantum attempt frequency can be written [25, 27]:

�G = (kBTQ/h̄)(L/ξ(T ))
√
	F(T )/kBTQ. (10)

Since QPS are expected to occur even at zero temperature,
one concludes that such QPS model presumes that any
superconducting wire has a finite resistance even at zero

temperature. So, strictly speaking, superconductor–insulator
transition does not occur, because the truly superconducting
phase does not exist within this model.

From equations (4) and (9) it follows that the ratio of the
quantum Giordano and classical LAMH terms can be written
as ρQC = RG/RLAMH = B(π t/8(1 − t))3/2 exp[c√1 − t((1 −
t)/t − aπ/8)]. Here the parameter c is defined in equation (6)
and a and B are unknown parameters of order unity.
The quantum contribution exceeds the classical one if the
temperature is low enough so that ρQC > 1. This condition
is satisfied if the temperature is, approximately, T < 0.7TC.
The ratio ρQC of the quantum and thermal contributions is
plotted in figure 10 (inset). The inset shows computed plots
of ρQC ≡ RMQT/RLAMH versus t ≡ T/TC for typical values
c = 8, 16, 24, 32, 40, with the assumption that a = 1 and
B = 1. The temperature T ∗ = 0.718TC appears as a universal
temperature below which the Giordano model predicts a higher
QPS rates compared to the TAPS rate. The temperature T ∗
is almost independent on the choice of the factors a and B .
The knowledge of the T ∗ is important for the analysis of
experimental R(T ) curves. As the temperature is reduced,
the resistance drops and quickly goes below the ‘noise floor’,
which, in many direct transport measurements on nanowires, is
in the range of 1–10 �. Thus one concludes that the quantum
Giordano contribution can only be observed in experiments, in
which the wire is thin enough and the set-up is sensitive enough
so that the resistance is still measurable (i.e. above the noise
level) at T ≈ 0.7TC and somewhat lower than this.

It can be noted that the situation is different in very thin
wires. The plots of figure 10 (inset) show that for wire with c <
8 the quantum contribution to the phase slip rates is larger than
the classical contribution at all temperatures. One can estimate
the corresponding critical diameter dC at which such quantum
regime begins. For this, we use equation (6) to get L/RN =
3cξ(0)/1.76

√
2RQ, where L/RN = AC/ρ = πd2

C/4ρ. The
resistivity for Mo79Ge21 is ρ ≈ 200 μ� cm = 2 k� nm.

Thus one gets dC =
√

12ρcξ(0)/1.76
√

2πRQ ≈ 6.2 nm with
the assumption that the length of the wire is L = 100 nm,
the coherence length is ξ(0) = 10 nm and the parameter
c = 8 (as the threshold for completely quantum behavior). It
is interesting to note that such estimated critical diameter is
indeed quite close to the diameter at which an SIT is observed,
at least for wires of length L ≈ 100 nm. The relevance of
this observation to the explanation of the SIT in nanowires is
unknown.

10. Transport measurements and comparison with
the LAMH theory and the Giordano model

A practically useful classification of samples based on their
R(T ) curves is illustrated by figure 7. The classification is
as follows: ‘S’, superconducting or ‘truly superconducting’
behavior, is defined as such that dR/dT > 0 and
d2(ln R)/dT 2 < 0; ‘N1’, normal and strongly conducting,
behavior is defined by the conditions dR/dT > 0 and
d2(ln R)/dT 2 > 0 (the N1 type of the R(T ) curve is also
called a ‘resistive tail’); ‘N2’, normal and weakly conducting,
is defined by the conditions dR/dT < 0 and d2(ln R)/dT 2 <
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Figure 7. Empirical qualitative classification of nanowires made of
superconducting metals. These include truly superconducting wires
(S), having a resistance that quickly decreases with cooling, resistive
or ‘normal’ wires (N1 and N2) and insulating wires (I), having their
resistance growing with cooling, without apparent saturation. The
difference between the two types of resistive wires, namely N1
(strongly conducting) and N2 (weakly conducting), is that N1 is
characterized by a resistance that drops with cooling and saturates at
some temperature, while N2 type exhibits a resistance that increases
slightly with cooling and also approaches a finite limit as the
temperature approaches zero. The N1 type of the R(T ) curve is also
called a ‘resistive tail’.

0; and, finally, ‘I’, the insulating one is defined by the
conditions dR/dT < 0 and d2(ln R)/dT 2 > 0. Thus,
for example, both superconducting (S) and normal strongly
conducting (N1) samples are characterized by resistance
decreasing with cooling. The difference between them, within
this classification, is that S samples exhibit a negative curvature
on the log-linear R(T ) plots while N1 samples exhibit a
positive curvature. Naturally, we also assume that if R(T ) →
R(0) > 0 in the limit T → 0, then the sample is either N1
type (if R(0) < RN) or N2 type (if R(0) � RN). If, on the
other hand, the resistance drops very rapidly with cooling, say
as R(T ) ∼ exp(−1/T ), then it is expected that R(T ) → 0
in the limit T → 0. Such a sample is classified as S type, in
agreement with the definitions given above. Evidently, these
classifications are only approximate since the measurements
are usually done down to T ∼ 10 mK in the best cases
and it is not known what happens to the sample conductance
below this limit. Also, the ‘noise floor’ for the resistance
is typically above 1 �, for usual values of the bias current
chosen in the range 1–10 nA. The behavior of the resistance
below this level is usually not known. One qualitative physical
interpretation of the classification introduced above can be
this: the S regime corresponds to the TAPS process, with
a negligible QPS rate; the N1 regime corresponds to the
TAPS process with a noticeable contribution of the QPS;
the N2 regime corresponds to a strong and dominant QPS
process, and the I regime corresponds to ‘proliferating’ QPS,
which completely eliminate the ability of the wire to carry a
supercurrent and possibly destroy the condensate completely,
due to the collective effect of the normal cores of the QPS [54].

Experimentally, samples of the type N1 and N2 are not ob-
served among homogeneous and short samples [5, 53, 59, 80].

Table 1. Parameters of short wires, studied in [5]. The wire’s length,
L , and the width, w, are measured under the SEM. Note that the
measured width w is expected to exceed considerably the actual
width of the metallic core of the nanowire. This overestimation of the
width is due to the presence of the surface oxidized layer. The
parameter RN is the normal state resistance, defined as is illustrated
in figure 3, t is the nominal thickness of the sputtered film, which is
assumed to be equal to the thickness of resulting wires. The diameter
dCALC is calculated from RN and L as dCALC = √

4Lρ/πRN. The
resistivity used in this calculation was chosen ρ = 2.35 k� nm. The
exact value of the resistivity is not well-known, but various estimates
give values scattered between 1.8 and 2.5 k� nm. The parameter c is
calculated as c ≡ 	F(0)/kTC = (1.76

√
2/3)[L/ξ(0)]

(RQ/RN) [82].

Sample L (nm) w (nm) DCALC (nm) t (nm) RN (k�)

A 99 ± 10 21 ± 3 11.1 8.5 2.39
B 127 ± 10 19 ± 3 11 8.5 3.14
C 93 ± 10 17 ± 2 8.8 8.5 3.59
D 109 ± 12 13 ± 3 8.3 7.0 4.73
E 116 ± 12 12 ± 4 7.9 7.0 5.61
F 125 ± 7 14 ± 4 7.8 7.0 6.09
G 105 ± 8 11 ± 2 6.2 5.5 8.22
H 121 ± 14 9 ± 2 6.5 5.5 8.67
I 140 ± 9 11 ± 2 6.6 5.5 9.67
J 86 ± 15 14 ± 3 3.1 7.5 26.17

In this review, we use the term ‘short’ referring to the sam-
ples shorter than about 200 nm. This is an empirical length
threshold, such that longer wires frequently show the N1 and
N2 types of behavior, while the short wires usually either be-
long to the S type or the I type. Samples of types N1 and
N2 were reported in, for example, [27, 55, 85, 86]. Some of
these examples will be discussed at the end of this section and
compared to the Giordano model. Also, some of the inhomo-
geneous samples exhibit N1 behavior. In general, inhomoge-
neous wires show a complicated behavior, which goes beyond
the simple classification of figure 7. They are excluded from
our discussion in this review. Inhomogeneous wires are easily
identified by multiple steps in their R(T ) curves as well as by
multiple critical current peaks in their dV/dI versus I curves.
For more details on the fabrication and the properties of in-
homogeneous wires see the corresponding sections in [5]. It
is notable that in experiments on thin superconducting films a
similar trend is found, i.e. granular films shows the N1 behavior
while homogeneous films show either the S or the I type [6].

A representative study of short wires, made of amorphous
Mo79Ge21, was reported by Bollinger et al [5, 66]. The
parameters of these wires are given in table 1. These were
unprotected MoGe wires sputter deposited over fluorinated
single-wall carbon nanotubes.

Resistance versus temperature plots for the samples listed
in the table 1, are shown in figure 8(a). All these samples
have L < 200 nm, i.e. these are short samples. It comes into
view that some samples exhibit a rapid decrease representing
an Arrhenius type activation dependence of the resistance on
temperature, while others remain strongly resistive down to the
lowest temperatures and exhibit some increase of the resistance
as T decreases. The samples A, B, C, ZZ, and YY are clearly
of the S type: their resistance drops rapidly and the curves
exhibit a negative curvature. The R(T ) curves of samples
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Figure 8. Resistance versus temperature of MoGe nanowires listed in table 1 [5]. Each curve represents a different sample. The difference
between the samples is the amount of MoGe sputtered, and the width and the length of the nanotube (or possibly a nanotube rope) that
supports the wire. (a) Log-linear plots of zero-bias resistance versus temperature. The dashed curves represent double-wire samples. (Inset)
The same R(T ) data magnified near RQ, showing that the behavior changes from S type to I type at RN ≈ 6.5 k�. (b) Resistance divided by
the length is plotted versus the temperature normalized by the critical temperature of the film. This combined plot includes all samples listed
in table 1 and also samples from [26] (thicker lines). The transition from S type to I type behavior is observed at RN/L ≈ 60 � nm−1. One
shorter sample, X, behaves as a superconducting wire, although it has a high value RN/L ≈ 70 � nm−1.

F, E, D, and X suggest that they are also S type, since they
satisfy the conditions dR/dT > 0 and d2(ln R)/dT 2 < 0.
Unfortunately, these samples were measured only down to
T ≈ 1.3 K so it is not possible to conclude with certainty that
their S type behavior would continue to lower temperatures.
The samples G, H, I, and J clearly satisfy the conditions for the
I type regime as they all satisfy the conditions dR/dT < 0
and d2(ln R)/dT 2 > 0. Thus, if the inconclusive samples
(E, F, D, X) are either excluded or assumed to continue their
S type behavior down to low temperatures, this entire set
of samples (figure 8(a)) exhibits a dichotomy, with an S-to-I
transition. This set of plots strongly suggests that a quantum
superconductor–insulator transition (SIT) takes place, as the
wires are made thinner and more resistive. The transition
takes place at some critical value of the wire’s normal state
resistance, which equals, approximately, RQ = h/4e2 ≈
6.5 k�. (The conventional exact value of the von Klitzing
constant is RK = h/e2 = 25 812.807 � [87]. For paired
electrons, the exact value therefore is RQ = h/4e2 =
6453.224 25 �.)

In order to verify whether the SIT critical point is
associated with some critical diameter or a critical value of the
wire cross section area A, we re-plot the data in a different
format. In figure 8(b) the ratio R/L = ρ/A is plotted
versus temperature, normalized by the critical temperature of
the film electrodes, following [27]. The samples from [26]
are also included for comparison, as thick solid curves. These
older results show a general agreement with the samples taken
from [5], regardless the fact that different types of nanotubes
were used in the fabrication process: ordinary tubes—in [26]
and insulating fluorinated tubes—in [5]). The entire collection

of samples satisfies approximately the following conditions:
samples with RN/L < 60 � nm−1 appear superconducting
and those with high RN/L > 60 � nm−1 turn out insulating.
Thus, some type of dichotomy is apparent in this presentation
also. Yet, due to the fact that all analyzed wires were of a
similar length, it is not possible to establish definitely whether
the critical point of the observed SIT is defined by a critical
resistance or by a critical cross section area. The sample X,
which was a shorter sample and had RN/L ≈ 70 � nm−1, still
shows an S type behavior. This sample tilts the balance in favor
of the assumption that the total normal resistance is the proper
control parameter. This trend was later confirmed by a study of
wires of different length [53].

One way to analyze such data (figure 8(b)) quantitatively
was proposed by Golubev and Zaikin [57]. Their model
predicts a rapid crossover rather than an SIT. In the model
the crossover from an approximately superconducting to
approximately normal behavior takes place at RN/L ∼
60 � nm−1, which corresponds to AC = ρ(L/R)C ∼ 33 nm2,
obtained assuming that the resistivity is ρ = 2000� nm. Thus
the critical diameter is dC = √

4AC/π ∼ 6.5 nm. This result
is in an approximate agreement with the data (figure 8(b)). It
is also in agreement with our above estimation, based on the
Giordano model, of the critical diameter at which the QPS rate
exceeds the TAPS rate at all temperatures (see the discussion
above and figure 10, inset).

Strong evidence in favor of SIT was reported by Bollinger
et al in [54]. The corresponding R(T ) curves are re-plotted in
figure 9. The top figure (figure 9(a)) accumulates all samples
which showed the insulating behavior, while the bottom graph
(figure 9(b)) presents all other homogeneous wires, all of which
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Figure 9. Sets of R(T ) curves for insulating and superconducting
wires are shown in (a) and (b) correspondingly. The measurements
were made by Bollinger et al [54]. The horizontal arrow in (a)
illustrates how the normal resistance RN is defined, using the
example of sample D. For samples A–H, the corresponding normal
resistances of the wires was RN = 6.43, 7.54, 8.25, 8.35, 10.33,
10.50, 18.05, and 32.46 k�. The corresponding lengths of these
wires were 46, 45, 140, 105, 140, 49, 120, and 86 nm. In (b), solid
curves indicate fits to the LAMH model, which represent the
resistance drop, occurring due to freezing out of TAPS. The fitting
parameters, namely the coherence lengths, 70.0, 19.0, 11.5, 9.4, 5.6,
and 6.7 nm, and the critical temperatures, 1.72, 2.28, 3.75, 3.86, 3.80,
and 4.80 K were used to calculate the fitting curves for samples 1–6
correspondingly. The corresponding normal resistances and the
lengths were 5.46, 3.62, 2.78, 3.59, 4.29, 2.39 k� and 177, 43, 63,
93, 187, 99 nm, respectively. Note that all superconducting samples
are shorter than 200 nm and have their normal resistance below the
quantum resistance constant, ∼6.5 k�. An alternative interpretation
of the superconducting samples, based on the QPS phenomenon and
involving slowing down of the QPS by the Caldeira–Leggett
mechanism, was recently advanced in [45].

showed the S type behavior. The observed dichotomy is an
indication of a quantum SIT. The transition takes place as the
normal resistance of the nanowire reaches some critical value,
which is close to RQ. We note that all the wires shown in
figure 8 have similar lengths, L ∼ 100 nm. Again, this
set of samples is not sufficient to establish, with certainty,
whether the total normal resistance RN of the wire is the control
parameter for the SIT, or it is the cross section area A of the
wire. A set of samples of widely varying lengths should be
measured in order to establish whether a global characteristic,
such as RN, or a local characteristics, such as A, controls
whether the wire belongs to S type or to I type.

An investigation of a set of samples with a wide variety
of lengths was recently reported by Bollinger et al [53]. It
was shown there that the critical resistance condition RN,C =
const ≈ RQ provides a better description of the SIT phase
boundary, compared to the critical cross section condition
AC = const, especially if only the short wires (L < 200 nm)
are included in the analysis. Yet, the expression RN,C =

Figure 10. R(T ) data (open symbols) for samples A, B, and C
compared to the LAMH theory of TAPS (continuous lines) [66]. The
table shows the best LAMH fitting parameters cExp, DExp, and TC and
compares them to the computed parameters (cTh and DTh). The
dashed lines show the predictions of the Giordano model
(equation (8)), which includes quantum phase slips. Heavy dashed
lines correspond to a = 1.3, B = 7.2. The thin dashed lines were
computed with a = 1, B = 1. The coefficients a and B have been
introduced in [27] in order to account for the absence of exact
knowledge about the ratio of attempt frequencies and the barrier
shapes, which influence the QPS and TAPS rates. Inset: computed
plots of ρQC ≡ RMQT/RLAMH versus t ≡ T/TC for c = 8, 16, 24, 32,
40 (assuming a = 1 and B = 1). The temperature T ∗ = 0.718 TC is
a universal temperature below which the Giordano model predicts a
higher QPS rates compared to the rate of TAPS.

const ≈ RQ was also not in perfect agreement with the data.
Bollinger et al found experimentally (see figure 4 in [53])
that the exact phase boundary can be expressed as a length-
dependent critical resistance. According to them, the SIT takes
place at the critical normal resistance RN,C = 2RQ/(1+ l0/L),
where the experimentally determined characteristic length
constant was l0 ≈ 107 nm. Three limiting cases can be defined
based on this formula: (i) very short wires (l0/L � 1) become
insulating as their cross section is reduced below the critical
value AC = ρl0/2RQ. (ii) Very long wires (l0/L 
 1) become
insulating at RN,C = 2RQ/(1+l0/L) ≈ 2RQ. (iii) Intermediate
wires (l0/L ≈ 1) become insulating as their normal resistance
exceeds the critical value RN,C = 2RQ/(1 + l0/L) ≈ RQ.
Note that the second case (l0/L 
 1) allows a simple
interpretation: long wires become insulating as soon as all
single-electron quantum states become localized, i.e. when the
resistance of the wire becomes half the von Klitzing constant,
RN,C ≈ 2RQ = h/2e2. Very short wires may be controlled
by a critical diameter, possibly due to expected presence
of magnetic moments in their surface [53, 80]. Complete
understanding of the phase boundary, however, is still lacking.

Now, following Bollinger [66], we compare the R(T )
curves of short MoGe samples with the LAMH model and the
Giordano model. Figure 10 shows R(T ) plots for samples A,
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(a) (b)

Figure 11. (a) Resistances versus temperature curves for a set of longer MoGe wires (up to 1000 nm long) [27]. The wire’s normal state
resistances and lengths are 1: 14.8 k�, 135 nm; 2: 10.7 k�, 135 nm; 3: 47 k�, 745 nm; 4: 17.3 k�, 310 nm; 5: 32 k�, 730 nm; 6: 40 k�,
1050 nm; 7: 10 k�, 310 nm; 8: 4.5 k�, 165 nm. (b) Resistance divided by the length plotted versus temperature, normalized by the critical
temperature of the film electrodes is plotted. The solid lines are the data. The dotted lines are calculated using the Giordano model of quantum
phase slips (see equations (8) and (9)). The two fitting parameters that produced the best agreement with the experiment curves are a = 1.3
and B = 7.2. They were used for the entire family of experimental curves.

B, and C (from figure 8(a)) together with the LAMH fits (solid
lines) computed using equation (4). The fits show a nearly
perfect agreement with the data, except very near TC, where
the LAMH theory is not applicable (due to the zeroing of its
attempt frequency) [39]. The experimental fitting constants
cExp and DExp are in good agreement with equations (6) and (7).
Thus these wires act as homogeneous 1D superconductors,
well described by the LAMH model, without inclusion of
the QPS. This fact gives evidence that the wires are true
superconductors (S type).

The dashed lines show the predictions of the Giordano
model (equation (8)), which includes QPS. The thick dashed
lines correspond to a = 1.3, B = 7.2, found experimentally
for longer wires by Lau et al [27]. The light dashed lines
correspond to generic values, a = 1, B = 1. In this
example, the QPS inclusion leads to a strong overestimation
of the wire resistance. This regime can be called ‘truly
superconducting’ since the QPS rate is strongly suppressed
and the results are explained in terms of TAPS. We speculate
that the observed absence of the QPS contribution to the
resistance might be due to the QPS suppression caused by some
coupling to the environmental dissipative reservoir, i.e. due
to the Caldeira–Leggett mechanism [47, 48]. The dissipative
bath may be provided by plasma waves in the leads [44] as
well as quasiparticles in the wire, which may be produced by a
collective action of multiple QPS.

Now we turn our attention to longer wires. A study of
wires up to ∼1000 nm in length was reported in [27]. The
behavior of longer wires was qualitatively different from the
short wires, discussed above. The main difference was that the
sharp dichotomy indicating the SIT was not observed in the
set of longer wires. On the contrary, a smooth crossover from
strongly superconducting to weakly superconducting wires and
then to normal-like wires was observed (figure 11(a)). Most

of the wires in the group shown in figure 11 exhibit resistive
tails, which were not found in the group of, on average, shorter
wires, such as those shown in figure 9(b). The resistive tails are
a sign of QPS. Indeed, it was possible to fit, approximately, the
entire series of R(T ) curves (figure 11(b)) using the Giordano
model (equation (8)), with only two fitting parameters. The
coefficients a and B are unknown and were used as free fitting
parameters.

The reason for the apparently different behavior in short
and longer wires is not well understood. Nevertheless, it should
be pointed out that the normal resistance of all wires in the
set of figure 11 was above RQ, while the normal resistance
of all truly superconducting (S type) wires (figures 8–10) is
below RQ. All observations can be summarized by saying that
wires with RN < RQ tend to be of S type, while the wires with
RN > RQ tend to be either I type, if they are very thin, or N1
type or N2 type, if the diameter is relatively larger. Since most
of the wires presented in figure 11 satisfy RN > RQ (except
sample #8), the QPS is not fully suppressed in any of these
wires (except #8, in which the QPS ‘tail’ is not present). Yet,
the QPS rate can be different (and may not always be sufficient
to produce I type regime), as it is dependent on the cross section
of the wire [57], which is inversely proportional to the ratio
R/L. So, on figure 11(b) one finds that wires with a low value
of RN/L (i.e. thicker wires) show a moderate level of QPS
(i.e. rather low resistance), while wires with larger values of
RN/L (which are thinner) show a higher resistance and, some
of them, even the I type behavior. Thus, the insulating behavior
requires two conditions: first, RN > RQ in order for QPS
to be present at all, and, second, RN/L > 60–70 � nm−1,
in order for the QPS to be frequent enough to accomplish a
complete suppression of the condensate. For short wires, the
second condition is immediately satisfied as soon as the first
is reached (by reducing the diameter). For longer wires, on
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the other hand, the first condition may be satisfied, while the
second is not, resulting in resistive tails (e.g. samples 6 and 7
in figure 11(b)).

11. Coulomb blockade in insulating wires

Short nanowires, which act as insulators (I type) have been
analyzed in terms of the Coulomb blockade by Bollinger et al
[54]. It was concluded that the apparent SIT transition occurs
between a truly superconducting phase and an insulating phase,
in which the condensate is eliminated in the wire, possibly due
to a collective effect of a large number of QPS, each of which
possesses a normal core. The insulator-like behavior is then
induced by weak Coulomb blockade. Below we review these
results.

Figure 9(a) shows R(T ) curves for a set of insulating
wires. To understand the observed dR/dT < 0 for all
these samples, we compare the results to the theories of
weak Coulomb blockade (CB) in diffusive normal wires.
Nazarov showed [88] that the CB can survive in a setting
in which two plates of a capacitor C are connected by a
coherent, homogeneous normal wire, instead of the usual
tunnel junction. The term ‘coherent’ implies that the wire
is short enough, so that electrons can propagate through the
entire wire without experiencing inelastic collisions. Thus,
quantum phase coherence is maintained for electrons diffusing
through the wire from one electrode to the other (or, in this
model, from one plate of the capacitor C to the other). In this
case, the entire nanowire plays the role of a tunnel barrier,
in which the wavefunction amplitude decays exponentially,
with a characteristic decay length given by the localization
length. Thus, the nanowire is similar to a tunnel barrier,
in which the wavefunction amplitude decays exponentially
also, but on a much shorter length scale. For this reason,
electrons can ‘tunnel’ through a diffusive nanowire over a
much longer length scale compared to ∼1 nm scale in ordinary
tunnel junctions. In other words, the entire nanowire acts as a
coherent scatterer [89]. It should be emphasized that within
this approach it is not assumed that the nanowire has some
sort of a break, or a grain boundary, or any sort of weak links
that would play a role of a tunnel barrier. On the contrary, the
entire disordered homogeneous wire acts as an effective tunnel
barrier, due to Anderson localization in disordered quasi-one-
dimension (quasi-1D) system.

Since the 1991 work of Punyakov and Zaikin [90], it
became clear that the Coulomb blockade survives even if the
barrier resistance is much lower than RK = h/e2. And
this is true for nanowires also: the CB does exist even in
systems with wires having RN 
 RK [88, 89, 91, 92].
Of course, the higher the barrier (wire) conductance, the
weaker the Coulomb blockade effect. Golubev and Zaikin
(GZ) [89] derived useful formulas for current–voltage I (V )
curves, enabling a direct comparison with the experiment. The
result is generally applicable to a coherent scatterer of any type,
including short thin wires and tunnel junctions. Again, the
model considered includes a capacitor C shunted with coherent
scatterer, i.e. a short enough mesoscopic diffusive wire or a
tunnel junction. The main prediction of the theory is the current

in this connecting element, for the case when the voltage on
this capacitor is set. According to the GZ theory, at high
temperatures (i.e. such that kBT � EC, where EC = e2/2C),
the zero-bias conductance, G(T ) = 1/R(T ) = I/V is:

G(T )/G0 = 1 − β[(EC/3kBT )

− (3g0ς(3)/2π
4 + 1/15)(EC/3kBT )2]. (11)

Here the parameter characterizing the distribution of conduct-
ing modes of the wire is defined as β = ∑

n Tn(1 − Tn)/
∑

n Tn.
For a tunnel junction, all the transmissions of the conducting
modes are low, i.e. Tn 
 1, so that β = 1. For a diffusive
coherent wire the result is β = 1/3 [89]. Other parameters are
ζ(3) = 1.202, g0 ≡ G0 RK, and G0 is the conductance of the
scatterer in the absence of the CB, i.e. at high temperatures or
high bias.

It is interesting to note that formally the same expression
as equation (11) was derived by Joyez and Esteve [93]
for a solitary tunnel junction, connected to macroscopic
measurement leads. In this case the current suppression due
to electron–electron repulsion is called the dynamic Coulomb
blockade. Equation (9) in [93] is formally the same as our
equation (11) (see above). The only difference is that in their
case β = 1, since a tunnel junction was considered, and the
value of the normalized high temperature limit conductance g0

is replaced by the normalized ‘environmental’ conductance:
gJ−E ≡ RK/Renv, with Renv being the impedance of the
environment.

Since the ratio EC/kBT is a small parameter, the 1/T and
1/T 2 terms of equation (11) can be eliminated by introducing
the Pekola type conductance function γ (T ) ≡ G0(G0 −
G(T ))−1. Then equation (11) assumes a particularly simple,
linear form:

γ (T ) ≡ γ (T ) ≡ G0(G0 − G(T ))−1 = A + BT (12)

where constants following from the GZ theory are

A = (9/β)(3gς(3)/2π4 + 1/15) and

B = 3kB/βEC. (13)

Historically the linearity of the γ (T ) function was
discovered by Pekola and collaborators in their analysis of
weak Coulomb blockade on systems involving two tunnel
junctions connected in series and forming a single-electron
tunneling (SET) transistor [94]. They found that at high
temperatures the gate-induced Coulomb oscillation is smeared
by thermal fluctuations, but a correction to the conductance of
the entire device remains significant even at high temperatures,
kBT/EC � 1. Their calculation is based on the Averin and
Likharev Orthodox theory of single-electron tunneling [95].
An approximate solution of the Orthodox theory dynamic
equations in the limit of high temperatures is γ (T ) ≡ A+ BT ,
with A = 0 and B = 3kB/EC. In this example the charging
energy is defined as EC = e2/2C� and C� = 2C + Cg is the
total capacitance of the Coulomb island of the SET device, with
Cg being the capacitance of the Coulomb island to the ground.
The capacitance of each junction is C . The conductance
function (Pekola function) γ (T ) ≡ G0(G0 − G(T ))−1 is
defined here with G0 = 1/2R0, where R0 is the resistance of
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each junction in the limit of very high temperatures when the
CB effect is completely suppressed. Note that the parameter B
agrees with the GZ more general expression (equation (13)),
since for tunnel junctions β = 1. The only qualitative
difference is that the GZ theory predicts an offset A (possibly
because it takes into account higher order corrections), while
the result of Pekola et al is that A = 0.

Unlike systems with two tunnel junctions connected in
series (as is the case in SET transistors), a solitary tunnel
junction, connected to measurement leads, can naively be
expected to show no charging effects (no CB), unless a
substantial impedance, intimately connected in series with it,
is present. Such argument might follow from the fact that
the macroscopic leads, between which the tunnel junction is
created, would have a very large mutual capacitance, rendering
the CB phenomenon unobservable. Indeed, a typical value
of the mutual capacitance of signal leads in a cryostat can
be roughly estimated ∼100 pF. The corresponding charging
energy would be 10 μK, which is ∼1000 times lower than
the lowest temperature at which an SET device can be
measured with present-day refrigerators. If the phenomenon
of single-electron tunneling is analyzed as a high frequency
phenomenon, still, one comes to the same conclusion since
the impedance of the leads is usually of the same order of
magnitude as the vacuum impedance

√
μ0/ε0 ≈ 377 �,

which is much lower than the resistance threshold h/e2 ≈
26 k� above which the CB phenomenon becomes prominent.
Thus it might seem impossible to observe any trace of the
Coulomb blockade on a system involving just one tunnel
junction, which couples two macroscopic leads with negligible
resistance. Yet this is not the case. Experimentally, a
significant zero-bias anomaly, in the form of a conductance
deep, exists in single junctions [96–99]. A plausible
explanation to these results was advanced by Kauppinen and
Pekola, in terms of weak Coulomb blockade combined with
a phenomenological Coulomb ‘horizon’ model [100]. They
also carried out measurements on solitary tunnel junctions
in order to corroborate their model. This suggested horizon
model is a simplified version of the rigorous environment SET
theory [101, 102, 93], and therefore it is intuitively more
transparent. Qualitatively speaking, the Coulomb horizon
defines the segment size of the electrodes, connected to
the tunnel junction, which is involved in the single-electron
tunneling events. This horizon allows one to define a finite
effective capacitance, and thus a non-zero charging energy,
even in the case when the leads are infinitely long. This
horizon effect has also been discussed by Delsing et al [103]
and by Wahlgren et al [99]. This same ‘horizon’ model
can be applied to single nanowires since, as was pointed out
above, a short nanowire is analogous to a tunnel junction.
Without going into details we just list the Kauppinen and
Pekola result for a solitary tunnel junction. Similar to the case
of two junctions, the conductance function here is, again, linear
γ (T ) ≡ G0/(G0 − G(T )) = A + BT , with the same value
of the slope B = 3kB/EC and a non-zero (due to the horizon
effect) offset value A = 3cLch̄/e2, where cL is the capacitance
per unit length of the conductor strip attached to the junction.

The importance of the Pekola conductance function γ (T )
is that it is always a linear function of temperature, at

Figure 12. Conductance function γ (T ) ≡ G0/[G0 − G(T )] plotted
versus temperature for the set of insulating samples of figure 9(a).
The linearity of this function is an indication of the Coulomb
blockade phenomenon. The solid lines are fits to the GZ theory (see
equations (12) and (13)). Values of the fitting parameter G0 are such
that G−1

0 = 6.14, 7.14, 7.93, 7.76, 9.78, 9.97, 17.33, and 26.10 k�,
respectively for the samples A through H. The corresponding normal
resistances of the wires are RN = 6.43, 7.54, 8.25, 8.35, 10.33,
10.50, 18.05, and 32.46 k�. The range of the offsets, calculated from
the GZ theory (the coefficient A of equation (13)) is shown by the
horizontal arrows on the left. It is in a qualitative agreement with the
actually observed offset values. The lengths of the wires A through H
were 46, 45, 140, 105, 140, 49, 120, and 86 nm.

high enough temperatures. It is predicted to be linear for
such systems as solitary junctions, double-junction Coulomb
devices, and diffusive wires. An observation of the linearity of
this function gives a strong evidence for the Coulomb blockade
physics dominating the behavior of the samples. Below we
discuss how this type of analysis applies to the samples with
insulating wires.

In figure 12 we plot Pekola conductance functions for the
insulating samples of figure 9(a). The predicted linearity of
the function γ (T ) is indeed found for all insulating samples,
confirming that Coulomb blockade plays a key role in the
observed insulating behavior. The parameter G0 was adjusted
to produce the best linearity of these γ (T ) curves. It turns out
that the thus obtained high temperature limit conductance of
these samples, G0, is in good agreement with the normal state
conductance R−1

N obtained by direct resistance measurements
(see the values listed in the caption to figure 12). Figure 13
presents the values of G0 plotted versus the inverse normal
resistance. It is clear that the results are close to the ideal
behavior. In other words, the values of the conductance
obtained by linearizing Pekola functions satisfy reasonably
well the expected relation G0 = R−1

N .
The offset of the γ (T ) curves, when extrapolated to

zero temperature, should be larger than zero. The arrows in
figure 12 show the expected range of the offsets A, calculated
using equation (13). The normalized high temperature
conductance was taken as g0 = RK/RN. The range of slopes
is in a semi-quantitative agreement with the experiment.

At higher temperatures (T > 1 K) some samples showed
a deviation from the linear behavior. Since in all samples the
nanowire is connected to the leads, which are superconducting,
the observed deviation from the linearity can be attributed to
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Figure 13. Values of G0, extracted from the GZ theory fits, plotted
versus R−1

N . The crosses (×) represent the G0 values chosen to
provide the best linear behavior of the γ (T ) curves of figure 12. The
open circles (◦) represent the G0 values obtained from
voltage-dependent nonlinear measurements, as described by
Bollinger et al [54]. The dashed line represents the expected
theoretical dependence G0 = R−1

N . (b) The crosses represent the
charging energies obtained from the slopes B of the linear regions of
the γ (T ) plots in figure 12, using the Golubev–Zaikin formula
EC = 9kB/B. The circles (◦) represent EC values obtained from the
voltage-dependent nonlinear measurements, as described in [54]. The
two horizontal dashed lines show the range of the charging energies
EC estimated for the given geometry of the electrodes connected to
the wire. The uncertainty occurs due to the fact that the exact
location of the Coulomb ‘horizon’ is unknown for these samples.

a suppression of the superconducting proximity effect in the
segments of the wire adjacent to the leads. The analysis of
those regions is beyond the scope of our discussion here.

Finally, the slope B of the linear regions on the γ (T )
plots is related to the charging energy of the samples, as
EC = 9kB/B . Thus obtained charging energies for samples
A through H are plotted in figure 13. They are compared
to the range of charging energies roughly estimated from
the geometry of the samples. The range of the estimated
charging energies is shown by the two horizontal dashed lines
(figure 13). The uncertainty occurs due to the fact that the
exact location of the Coulomb ‘horizon’ is unknown for these
samples. Most of the experimental points lie within the region
between the two dashed lines, as expected [54].

12. Conclusions

Suspended molecular templates have been used for the
fabrication of nanowires with sub-10 nm diameters. The
length of such wires could be made as short as ∼40 nm,
thus making them some of the thinnest and shortest wires
ever studied. This fabrication method made possible an
observation of a dichotomy in the wire behavior. Two
qualitatively different regimes have been observed, which
can be characterized as ‘superconducting’ and ‘insulating’.
The geometric characteristics of the wire and correspondingly
its normal resistance determine to which group the wire
belongs. An approximate condition was found for ‘short’
wires, i.e. those shorter than ∼200 nm (which is an empirical
length threshold). The condition is that wires with the
normal resistance satisfying RN < RC ≈ h/4e2 behave
as ‘true’ superconductors and wires with RN > RC ≈
h/4e2 showed a behavior that can be considered weakly
insulating (i.e. the resistance was increasing with decreasing

temperature). These observations suggest a quantum phase
transition of superconductor–insulator type.

The TAPS theory was applied to describe R(T ) curves
and showed a very good agreement with the measurements,
for short wires with RN < RC. These wires behave as
‘true superconductors’ and should approach zero resistance
at temperature is pushed to zero. It appears also that the S-
type wire R(T ) curves agree with some of the QPS-based
theories [45, 109].

Deviations from the TAPS theory have been observed
on wires with RN > RC. Among these wires, the short
ones (L < 200 nm) exhibit an insulating behavior, as
already mentioned above. Such wires are described by
models involving weak Coulomb blockade, with an additional
assumption that superconductivity is completely suppressed in
them, possibly due to proliferation QPS. The R(T ) curves of
longer wires showed a decrease of the resistance with cooling,
even those which satisfy RN > RC. They were fitted with the
Giordano model, involving quantum tunneling of phase slips.
Good fits were obtained for the majority of tested long wires
(L > 200 nm). These wires can be expected to have a finite
resistance at zero temperature, due to quantum phase slippage
(N1 type). Thus a clear-cut SIT can only be seen in short wires.
Longer wires show a gradual crossover behavior.

The origin of the SIT apparent in the short wires can be
explained qualitatively as being due to coupling of QPS to
gapless excitations in the environment [11, 13–16], similar to
the origin of the Schmid–Bulgadaev transition [49–52]. The
QPS-free regime can be understood assuming that the QPS
are suppressed due to a coupling of the wire condensate to
a Caldeira–Leggett type of environment [47, 48, 45]. This
environment can be due to a collective effect of the QPS normal
cores [54, 45] and plasmons in the leads [44, 45]. In the
insulating phase the QPS proliferate and completely suppress
superconductivity by their normal cores.

An alternative explanation for the observed superconductor–
insulator phase transition can be derived from the presence of
local magnetic moments on the surface of wires, possibly oc-
curring due to strong disorder on the oxidized surface. The
presence of such moments was suggested by Rogachev et al
[80]. As the wire diameter becomes smaller, the effective con-
centration of local magnetic moments increases and, at some
point, they can destroy the superconductivity in the wire, due to
the well-known Abrikosov–Gor’kov mechanism [39, 81]. This
possibility was discussed in [53], and a theoretical analysis of
pair-breaking quantum phase transitions in nanowires has been
carried out in [104–106]. Further understanding of the SIT can
be gained by using microwave techniques [107].
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[43] Büchler H P, Geshkenbein V B and Blatter G 2004 Phys. Rev.

Lett. 92 067007
[44] Khlebnikov S and Pryadko L P 2005 Phys. Rev. Lett.

95 107007
[45] Meidan D, Oreg Y and Refael G 2007 Phys. Rev. Lett.

98 187001
[46] Werner P and Troyer M 2005 Phys. Rev. Lett. 95 060201
[47] Leggett A J 1980 Prog. Theor. Phys. Suppl. 69 80
[48] Caldeira A O and Leggett A J 1981 Phys. Rev. Lett. 46 211
[49] Chakravarty S 1982 Phys. Rev. Lett. 49 681
[50] Schmid A 1983 Phys. Rev. Lett. 51 1506
[51] Bulgadaev S A 1984 JETP Lett. 39 315
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